翻訳と辞書
Words near each other
・ Yetlington
・ Yetman (surname)
・ Yetman, New South Wales
・ Yetmen
・ Yetminster
・ Yetminster Hundred
・ Yetminster railway station
・ Yetnebersh Nigussie
・ Yeto Island
・ Yeto Vellipoyindhi Manasu
・ Yett
・ Yetta Barsh Shachtman
・ Yetta Zwerling
・ Yettem, California
・ Yetter, Iowa
Yetter–Drinfeld category
・ Yettinabudihal
・ Yettinhatti
・ Yettinkeri
・ Yetto railway station
・ Yetunde
・ Yetzer hara
・ Yetzirah
・ Yeum Go-eun
・ Yeung Chau
・ Yeung Chau, Tai Po
・ Yeung Chi Lun
・ Yeung Ching Kwong
・ Yeung Chui Ling
・ Yeung Hok-ling


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Yetter–Drinfeld category : ウィキペディア英語版
Yetter–Drinfeld category
In mathematics a Yetter–Drinfeld category is a special type of braided monoidal category. It consists of modules over a Hopf algebra which satisfy some additional axioms.
== Definition ==

Let ''H'' be a Hopf algebra over a field ''k''. Let \Delta denote the coproduct and ''S'' the antipode of ''H''. Let ''V'' be a vector space over ''k''. Then ''V'' is called a (left left) Yetter–Drinfeld module over ''H'' if
* (V,\boldsymbol) is a left ''H''-module, where \boldsymbol: H\otimes V\to V denotes the left action of ''H'' on ''V'' and ⊗ denotes a tensor product,
* (V,\delta\;) is a left ''H''-comodule, where \delta : V\to H\otimes V denotes the left coaction of ''H'' on ''V'',
* the maps \boldsymbol and \delta satisfy the compatibility condition
:: \delta (h\boldsymbolv)=h_v_S(h_)
\otimes h_\boldsymbolv_ for all h\in H,v\in V,
:where, using Sweedler notation, (\Delta \otimes \mathrm)\Delta (h)=h_\otimes h_
\otimes h_ \in H\otimes H\otimes H denotes the twofold coproduct of h\in H , and \delta (v)=v_\otimes v_ .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Yetter–Drinfeld category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.